\(\int \frac {\sec (c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx\) [103]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 102 \[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=\frac {(A-B) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac {(2 A+3 B) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {(2 A+3 B) \tan (c+d x)}{15 d \left (a^3+a^3 \sec (c+d x)\right )} \]

[Out]

1/5*(A-B)*tan(d*x+c)/d/(a+a*sec(d*x+c))^3+1/15*(2*A+3*B)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^2+1/15*(2*A+3*B)*tan(
d*x+c)/d/(a^3+a^3*sec(d*x+c))

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {4085, 3881, 3879} \[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=\frac {(2 A+3 B) \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac {(2 A+3 B) \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2}+\frac {(A-B) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3} \]

[In]

Int[(Sec[c + d*x]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^3,x]

[Out]

((A - B)*Tan[c + d*x])/(5*d*(a + a*Sec[c + d*x])^3) + ((2*A + 3*B)*Tan[c + d*x])/(15*a*d*(a + a*Sec[c + d*x])^
2) + ((2*A + 3*B)*Tan[c + d*x])/(15*d*(a^3 + a^3*Sec[c + d*x]))

Rule 3879

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[-Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3881

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b*Cot[e + f*x]*((a
+ b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(m + 1)/(a*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]

Rule 4085

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(A*b - a*B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(a*B*m + A*b*
(m + 1))/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, A, B, e, f}, x
] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = \frac {(A-B) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac {(2 A+3 B) \int \frac {\sec (c+d x)}{(a+a \sec (c+d x))^2} \, dx}{5 a} \\ & = \frac {(A-B) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac {(2 A+3 B) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {(2 A+3 B) \int \frac {\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{15 a^2} \\ & = \frac {(A-B) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac {(2 A+3 B) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {(2 A+3 B) \tan (c+d x)}{15 d \left (a^3+a^3 \sec (c+d x)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.86 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.32 \[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \left (5 (8 A+3 B) \sin \left (\frac {d x}{2}\right )-15 (2 A+B) \sin \left (c+\frac {d x}{2}\right )+20 A \sin \left (c+\frac {3 d x}{2}\right )+15 B \sin \left (c+\frac {3 d x}{2}\right )-15 A \sin \left (2 c+\frac {3 d x}{2}\right )+7 A \sin \left (2 c+\frac {5 d x}{2}\right )+3 B \sin \left (2 c+\frac {5 d x}{2}\right )\right )}{30 a^3 d (1+\cos (c+d x))^3} \]

[In]

Integrate[(Sec[c + d*x]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^3,x]

[Out]

(Cos[(c + d*x)/2]*Sec[c/2]*(5*(8*A + 3*B)*Sin[(d*x)/2] - 15*(2*A + B)*Sin[c + (d*x)/2] + 20*A*Sin[c + (3*d*x)/
2] + 15*B*Sin[c + (3*d*x)/2] - 15*A*Sin[2*c + (3*d*x)/2] + 7*A*Sin[2*c + (5*d*x)/2] + 3*B*Sin[2*c + (5*d*x)/2]
))/(30*a^3*d*(1 + Cos[c + d*x])^3)

Maple [A] (verified)

Time = 0.84 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.55

method result size
parallelrisch \(\frac {\left (\left (A -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\frac {10 A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{3}+5 A +5 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{20 a^{3} d}\) \(56\)
derivativedivides \(\frac {\frac {\left (A -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}-\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} A}{3}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B}{4 d \,a^{3}}\) \(64\)
default \(\frac {\frac {\left (A -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}-\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} A}{3}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B}{4 d \,a^{3}}\) \(64\)
risch \(\frac {2 i \left (15 A \,{\mathrm e}^{4 i \left (d x +c \right )}+30 A \,{\mathrm e}^{3 i \left (d x +c \right )}+15 B \,{\mathrm e}^{3 i \left (d x +c \right )}+40 A \,{\mathrm e}^{2 i \left (d x +c \right )}+15 B \,{\mathrm e}^{2 i \left (d x +c \right )}+20 \,{\mathrm e}^{i \left (d x +c \right )} A +15 B \,{\mathrm e}^{i \left (d x +c \right )}+7 A +3 B \right )}{15 d \,a^{3} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{5}}\) \(114\)
norman \(\frac {\frac {\left (A -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{20 a d}-\frac {\left (A +B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 a d}+\frac {\left (5 A +3 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{12 a d}-\frac {\left (13 A -3 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{60 a d}}{\left (-1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) a^{2}}\) \(117\)

[In]

int(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/20*((A-B)*tan(1/2*d*x+1/2*c)^4-10/3*A*tan(1/2*d*x+1/2*c)^2+5*A+5*B)*tan(1/2*d*x+1/2*c)/a^3/d

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.91 \[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=\frac {{\left ({\left (7 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (2 \, A + 3 \, B\right )} \cos \left (d x + c\right ) + 2 \, A + 3 \, B\right )} \sin \left (d x + c\right )}{15 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

1/15*((7*A + 3*B)*cos(d*x + c)^2 + 3*(2*A + 3*B)*cos(d*x + c) + 2*A + 3*B)*sin(d*x + c)/(a^3*d*cos(d*x + c)^3
+ 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

Sympy [F]

\[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=\frac {\int \frac {A \sec {\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \sec ^{2}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**3,x)

[Out]

(Integral(A*sec(c + d*x)/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x) + Integral(B*sec(c + d
*x)**2/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x))/a**3

Maxima [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.13 \[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=\frac {\frac {A {\left (\frac {15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {10 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}} + \frac {3 \, B {\left (\frac {5 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}}}{60 \, d} \]

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

1/60*(A*(15*sin(d*x + c)/(cos(d*x + c) + 1) - 10*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(cos(d
*x + c) + 1)^5)/a^3 + 3*B*(5*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a^3)/d

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.74 \[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=\frac {3 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 10 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 15 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 15 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{60 \, a^{3} d} \]

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

1/60*(3*A*tan(1/2*d*x + 1/2*c)^5 - 3*B*tan(1/2*d*x + 1/2*c)^5 - 10*A*tan(1/2*d*x + 1/2*c)^3 + 15*A*tan(1/2*d*x
 + 1/2*c) + 15*B*tan(1/2*d*x + 1/2*c))/(a^3*d)

Mupad [B] (verification not implemented)

Time = 13.76 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.65 \[ \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (15\,A+15\,B-10\,A\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+3\,A\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-3\,B\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\right )}{60\,a^3\,d} \]

[In]

int((A + B/cos(c + d*x))/(cos(c + d*x)*(a + a/cos(c + d*x))^3),x)

[Out]

(tan(c/2 + (d*x)/2)*(15*A + 15*B - 10*A*tan(c/2 + (d*x)/2)^2 + 3*A*tan(c/2 + (d*x)/2)^4 - 3*B*tan(c/2 + (d*x)/
2)^4))/(60*a^3*d)